In the framework of the relativistic quantum molecular dynamics approach (RQMD) we investigate antideuteron (d) observables in Au+Au collisions at 10.7 AGeV. The impact parameter dependence of the formation ratios d/p2 and d/p2 is calculated. In central collisions, the antideuteron formation ratio is predicted to be two orders of magnitude lower than the deuteron formation ratio. The d yield in central Au+Au collisions is one order of magnitude lower than in Si+Al collisions. In semicentral collisions di erent configuration space distributions of p s and d s lead to a large squeeze out e ect for antideuterons, which is not predicted for the p s