ATP ist ein weit verbreitetes Signalmolekül im ZNS. Seine Hauptfunktionen betreffen die präsynaptische Modulation der Transmitterfreisetzung und die schnelle exzitatorische Transmission. Die Aktivierung ionotroper P2X-Rezeptoren durch ATP beinhaltet den Einstrom von Kalzium in die Zelle. Unter pathologischen Bedingungen, wie bei Epilepsie oder Ischämie, ist die ATP-Freisetzung erhöht und könnte einen neuronalen Zelltod induzieren. Eine anhaltender Aktivierung von NMDA-Rezeptoren und der dadurch erhöhte Einstrom von Kalzium in die Zelle stellt dabei den primären Effektor der Neurotoxizität dar. Dieses, als Exzitotoxizität bezeichnete Phänomen, ist an vielen neurologischen Krankheiten beteiligt. In der vorliegenden Arbeit wurde die Wirkung von ATP und anderen Purin- und Pyrimidin-Nukleotiden und von Adenosin auf die Überlebensrate von Neuronen bei induzierter Toxizität in hippokampalen Primärkulturen untersucht. Neurotoxizität wurde durch die Applikation der Glutamat-Rezeptor-Agonisten NMDA (30 μM) oder Kainat (300 μM) und durch Applikation von KCl (30 mM) induziert. Purin- und Pyrimidin-Nukleotide wurden in verschiedenen Konzentrationen von 10 μM – 1000 μM koappliziert. Nach 24 Stunden wurde die Überlebensrate der Neurone mit der Methode des Neuronen-spezifischen zellulären ELISA quantifiziert. Applikation von NMDA reduzierte den Anteil lebender Zellen auf 56 ± 3%. Der NMDARezeptor-Antagonist MK-801 verhinderte die NMDA-induzierte Toxizität. Die Koapplikation von ATP (0,01-1 mM) schwächte die zytotoxischen Wirkung von NMDA konzentrationsabhängig ab. Die Purine ITP und GTP zeigten ebenfalls eine protektive Wirkung und reduzierten die NMDA-induzierte Toxizität, wohingegen die Pyrimidin-Nukleotide UTP und CTP keinen protektive Wirkung zeigten. Weitere getestete P2-Rezeptor-Agonisten, wie ADP, AMP, Adenosin, α,β-meATP, 2MeSATP, das Dinukleotid Ap4A, α,β-meADP und BenzoylATP waren unwirksam. Der P2-Rezeptor-Antagonist Reactive Blue 2 (100 μM) inhibierte die Wirkung von ATP. Suramin und PPADS (100 μM) verhinderten die protektive Wirkung von ATP nicht. Applikation von Kainat reduzierte den Anteil lebender Zellen auf 37 ± 0,3%. Der Antagonist CNQX (100 μM) verhinderte die Kainat-induzierte Toxizität. Weder ATP noch GTP zeigten eine protektive Wirkung nach Kainat-induzierter Toxizität. Dies steht im Gegensatz zu ihrer protektiven Wirkung nach NMDA-vermittelter Toxizität. Applikation von KCl reduzierte den Anteil lebender Zellen auf 61 ± 4%. Die Purin- und Pyrimidin-Nukleotide (1 mM) zeigten bei K+-Depolarisation ein völlig anderes Wirkungsspektrum als bei Applikation von NMDA: GTP > ITP > ATP > ADP > CTP > α,β-meATP > UTP > AMP. 2MeSATP, α,β-meADP, Ap4A, BenzoylATP und Adenosin veränderten die Überlebensrate der Zellen nach KCl-induzierter Toxizität nicht. Weder Suramin noch PPADS (100 μM) inhibierten die protektive Wirkung von ATP. Diese Ergebnisse lassen vermuten, daß die protektive Wirkung von ATP, GTP und ITP weder P2- noch Adenosin-Rezeptor-vermittelt war. Zudem schienen sie spezifisch für eine NMDARezeptor-vermittelte Toxizität, da ATP und GTP nach Kainat-Applikation keine Wirkung erzielten und die alleinige Applikation der verwendeten P2-Rezeptor-Agonisten und Antagonisten (Kontrollen) keine Wirkung auf das Überleben von Neuronen hatte. Deshalb wurde eine direkte Inhibition des NMDA-Rezeptors durch ATP postuliert. In einer Kooperationsarbeit führte Dr. Bodo Laube vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main elektrophysiologische Messungen an Oozyten und hippokampalen Neuronen zur Bestätigung dieser Hypothese durch. ATP inhibierte in Oozyten NMDA-induzierte Einwärtsströme kompetitiv durch Bindung an die NR2B-Rezeptor-Untereinheit. ITP, GTP, AMP waren an dieser rekombinanten NR1/NR2BRezeptorkombination ebenso effektiv, wohingegen UTP, CTP, ADP und Adenosin nur schwache inhibitorische Wirkungen zeigten. In kultivierten hippokampalen Neuronen inhibierte ATP auch NMDA-induzierte Ströme, nicht jedoch Kainat-induzierte Ströme. Die Expression der beiden NMDA-Rezeptor-Untereinheiten NR1 und NR2B wurde durch immunzytochemische Untersuchungen in den hippokampalen Neuronen bestätigt. Die Resultate zeigten, daß ATP direkt NMDA-Rezeptoren mit einer bestimmten Untereinheitenzusammensetzung inhibierten. Zusammenfassend zeigen die Ergebnisse der vorliegenden Arbeit, daß ATP und andere Purinund Pyrimidin-Nukleotide durch Inhibition des NMDA-Rezeptors neuroprotektive Wirkungen vermitteln können. Dies ist eine neue Funktion von ATP zu der bereits beschriebenen direkten Aktivierung von postsynaptischen P2X-Rezeptoren und zu seiner Rolle als eine extrazelluläre Quelle des synaptischen Modulators Adenosin an glutamatergen Synapsen