In this work we find the minimal extension of the Standard Model's Higgs sector which can lead to a light Higgs boson via radiative symmetry breaking and is consistent with the phenomenological requirements for a low-energy realization of a conformal theory. The model which turns out to be stable under renormalization group translations is an extension of the Standard Model by two scalar fields, one of which acquires a finite vacuum expectation value and therefore mixes into the physical Higgs. We find that the minimal model predicts a sizable amount of mixing which makes it testable at a collider. In addition to the physical Higgs, the theory's scalar spectrum contains one light and one heavy boson. The heavy scalar's properties render it a potential dark matter candidate