The role and structure of carbonaceous materials in dehydrogenation reactions

Abstract

The catalytic dehydrogenation (DH) and oxidative dehydrogenation (ODH) of light alkanes is widely studied as a route to the formation of alkenes and di-alkenes, important precursor molecules for synthetic rubbers, plastics and a variety of other products [1,2]. Recent studies have focused on the non-oxidative DH of butane over alumina-supported vanadia catalysts [3-5]. In the present work, we provide a detailed understanding of both the role and structure of coke deposited on VOx/Al2O3 during reaction. A range of characterisation techniques have been employed including the first application of terahertz time domain spectroscopy (THz-TDS) to the study of coke. Complementary THz-TDS characterisation of carbonaceous materials including carbon nanofibres (CNFs) has also been conducted. For such materials THz-TDS spectra can be correlated with their catalytic performance in the oxidative dehydrogenation of ethylbenzene to form styrene

    Similar works