Stellar jets are normally constituted by chains of knots with some
periodicity in their spatial distribution, corresponding to a variability of
order of several years in the ejection from the protostar/disk system. A widely
accepted theory for the presence of knots is related to the generation of
internal working surfaces due to variations in the jet ejection velocity. In
this paper we study the effect of variations in the inner disk-wind radius on
the jet ejection velocity. We show that a small variation in the inner
disk-wind radius produce a variation in the jet velocity large enough to
generate the observed knots. We also show that the variation in the inner
radius may be related to a variation of the stellar magnetic field.Comment: 5 pages, 3 figures, accepted for publication in Ap