This work compares single molecule conductance measurements of selected organic systems containing identical oligophenylene molecular wires and different tripodal anchoring groups. Single molecule conductance G was obtained by a scanning tunneling microscopy break junction technique complemented by theoretical calculations based on the density functional theory and non-equilibrium Green’s function formalism. Two molecules were compared where the same oligophenylene wire is connected to one of the electrodes via a tripod substituted on each leg by a thiol group either in the meta or para position. By combined experimental and theoretical analysis it was possible to confirm that single molecule conductance in the metal-molecule-metal junction of both molecules corresponds to a fully extended molecular wire, which is attached to one of the electrodes by all three thiolate bonds of the tripod. Experimental results confirmed that G value of meta-connected molecules is lower than that of para, whereas junction formation probability was higher for meta functionalization