The classic frequentist theory of hypothesis testing developed by Neyman,
Pearson and Fisher has a claim to being the twentieth century's most
influential piece of applied mathematics. Something new is happening in the
twenty-first century: high-throughput devices, such as microarrays, routinely
require simultaneous hypothesis tests for thousands of individual cases, not at
all what the classical theory had in mind. In these situations empirical Bayes
information begins to force itself upon frequentists and Bayesians alike. The
two-groups model is a simple Bayesian construction that facilitates empirical
Bayes analysis. This article concerns the interplay of Bayesian and frequentist
ideas in the two-groups setting, with particular attention focused on Benjamini
and Hochberg's False Discovery Rate method. Topics include the choice and
meaning of the null hypothesis in large-scale testing situations, power
considerations, the limitations of permutation methods, significance testing
for groups of cases (such as pathways in microarray studies), correlation
effects, multiple confidence intervals and Bayesian competitors to the
two-groups model.Comment: This paper commented in: [arXiv:0808.0582], [arXiv:0808.0593],
[arXiv:0808.0597], [arXiv:0808.0599]. Rejoinder in [arXiv:0808.0603].
Published in at http://dx.doi.org/10.1214/07-STS236 the Statistical Science
(http://www.imstat.org/sts/) by the Institute of Mathematical Statistics
(http://www.imstat.org