In this work, we calculate with ab initio methods the current-voltage
characteristics for ideal single- and double-barrier Fe/MgO (001) magnetic
tunnel junctions. The current is calculated in the phase-coherent limit by
using the recently developed SMEAGOL code, combining the nonequilibrium Green
function formalism with density-functional theory. In general we find that
double-barrier junctions display a larger magnetoresistance, which decays with
bias at a slower pace than their single-barrier counterparts. This is explained
in terms of enhanced spin filtering from the middle Fe layer sandwiched in
between the two MgO barriers. In addition, for double-barrier tunnel junctions,
we find a well defined peak in the magnetoresistance at a voltage of V=0.1 V.
This is the signature of resonant tunneling across a majority quantum well
state. Our findings are discussed in relation to recent experiments