Collision quenching in the ultrafast dynamics of plasmonic materials

Abstract

We explore the nonlinear response of plasmonic materials driven by ultrashort pulses of electromagnetic radiation with temporal duration of few femtoseconds and high peak intensity. By developing the Fokker-Planck-Landau theory of electron collisions, we solve analytically the collisional integral and derive a novel set of hydrodynamical equations accounting for plasma dynamics at ultrashort time scales. While in the limit of small light intensities we recover the well established Drude model of plasmas, in the high intensity limit we observe nonlinear quenching of collision-induced damping leading to absorption saturation. Our results provide a general background to understand electron dynamics in plasmonic materials with promising photonic applications in the manipulation of plasma waves with reduced absorption at the femtosecond time scale

    Similar works

    Full text

    thumbnail-image

    Available Versions