research

Twist instability in strongly correlated carbon nanotubes

Abstract

We show that strong Luttinger correlations of the electron liquid in armchair carbon nanotubes lead to a significant enhancement of the onset temperature of the putative twist Peierls instability. The instability results in a spontaneous uniform twist deformation of the lattice at low temperatures, and a gapped ground state. Depending on values of the coupling constants the umklapp electron scattering processes can assist or compete with the twist instability. In case of the competition the umklapp processes win in wide tubes. In narrow tubes the outcome of the competition depends on the relative strength of the e-e and e-ph backscattering. Our estimates show that the twist instability may be realized in free standing (5,5) tubes.Comment: 4 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019