We present Ha integral field spectroscopy of well resolved, UV/optically
selected z~2 star-forming galaxies as part of the SINS survey with SINFONI on
the ESO VLT. Our laser guide star adaptive optics and good seeing data show the
presence of turbulent rotating star forming rings/disks, plus central
bulge/inner disk components, whose mass fractions relative to total dynamical
mass appears to scale with [NII]/Ha flux ratio and star formation age. We
propose that the buildup of the central disks and bulges of massive galaxies at
z~2 can be driven by the early secular evolution of gas-rich proto-disks. High
redshift disks exhibit large random motions. This turbulence may in part be
stirred up by the release of gravitational energy in the rapid cold accretion
flows along the filaments of the cosmic web. As a result dynamical friction and
viscous processes proceed on a time scale of <1 Gyr, at least an order of
magnitude faster than in z~0 disk galaxies. Early secular evolution thus drives
gas and stars into the central regions and can build up exponential disks and
massive bulges, even without major mergers. Secular evolution along with
increased efficiency of star formation at high surface densities may also help
to account for the short time scales of the stellar buildup observed in massive
galaxies at z~2.Comment: accepted Astrophysical Journal, main July 8 200