We study the one-dimensional spin-1/2 Heisenberg chain with competing
ferromagnetic nearest-neighbor J_1 and antiferromagnetic next-nearest-neighbor
J_2 exchange couplings in the presence of magnetic field. We use both numerical
approaches (the density matrix renormalization group method and exact
diagonalization) and effective field-theory approach, and obtain the
ground-state phase diagram for wide parameter range of the coupling ratio
J_1/J_2. The phase diagram is rich and has a variety of phases, including the
vector chiral phase, the nematic phase, and other multipolar phases. In the
vector chiral phase, which appears in relatively weak magnetic field, the
ground state exhibits long-range order (LRO) of vector chirality which
spontaneously breaks a parity symmetry. The nematic phase shows a quasi-LRO of
antiferro-nematic spin correlation, and arises as a result of formation of
two-magnon bound states in high magnetic fields. Similarly, the higher
multipolar phases, such as triatic (p=3) and quartic (p=4) phases, are formed
through binding of p magnons near the saturation fields, showing quasi-LRO of
antiferro-multipolar spin correlations. The multipolar phases cross over to
spin density wave phases as the magnetic field is decreased, before
encountering a phase transition to the vector chiral phase at a lower field.
The implications of our results to quasi-one-dimensional frustrated magnets
(e.g., LiCuVO_4) are discussed.Comment: v1. 20 pages, 18 figures: v2: 21 pages, 19 figures, Title modified
slightly. Some references, Fig.16, and a note are added. To appear in Phys.
Rev.