research

Hall Effect of the Triclinic Al73Mn27 and T-Al73Mn27–xPdx (0 ≤ x ≤ 6) Complex Metallic Alloys

Abstract

The Hall coefficient, RH, of the triclinic Al73Mn27 and Taylor-phase Al73Mn27xPdx (x = 0, 2, 4 and 6) complex metallic alloys has been measured from 90 to 400 K. The Hall coefficients of all the samples are positive and they decrease strongly with the increase of temperature, T. For the separation of the normal, R0, and anomalous, RS, Hall coefficient the results for the paramagnetic susceptibility,χ(T), and electrical resistivity, ρ(T), have been used. The well defined linearity of the RH vs. χ(T)·ρ2(T) plots confirms the assumption that in these materials RH is dominated by spin-orbit interaction. The values deduced from the RH vs. χ and RH vs. χ·ρ2 plots in T­AlMnPd phases, fall between –2 × 10–10 m3 C–1 and 0 for R0, and are about 5 × 10–7 m3 C–1 for RS. The values deduced from the RH vs. χ·ρ2 plots in the triclinic Al73Mn27 alloy are about –15 × 10–10 m3 C–1 for R0, and about 1.5 × 10–5 m3 C–1 for RS.</p

    Similar works