Suppose that a target function is monotonic, namely, weakly increasing, and
an available original estimate of this target function is not weakly
increasing. Rearrangements, univariate and multivariate, transform the original
estimate to a monotonic estimate that always lies closer in common metrics to
the target function. Furthermore, suppose an original simultaneous confidence
interval, which covers the target function with probability at least
1−α, is defined by an upper and lower end-point functions that are not
weakly increasing. Then the rearranged confidence interval, defined by the
rearranged upper and lower end-point functions, is shorter in length in common
norms than the original interval and also covers the target function with
probability at least 1−α. We demonstrate the utility of the improved
point and interval estimates with an age-height growth chart example.Comment: 24 pages, 4 figures, 3 table