Influences of Twilight on Diurnal Variation of Core Temperature, Its Nadir, and Urinary 6-Hydroxymelatonin Sulfate during Nocturnal Sleep and Morning Drowsiness
This study aimed at elucidating the physiological significance of dusk and dawn in the circadian rhythm of core temperature (Tcore) and urinary 6-hydroxymelatonin sulfate in humans during sleep and the waking sensation just after rising. Seven female and four male students served as participants. Participants retired at 2300 h and rose at 0700 h. They were requested to sit on a chair and spend time as quietly as possible during wakefulness, reading a book or listening to recorded light music. Two lighting conditions were provided for each participant: 1) Light-Dark (LD)-rectangular light change with abrupt decrease from 3,000 lx to100 lx at 1800 h, abrupt increase from 0 lx to 3,000 lx at 0700 h. 2) LD-twilight light change with gradual decrease from 3,000 lx to 100 lx starting at 1700 h (twilight period about 2 h), with gradual increase from 0 lx to 3,000 lx starting at 0500 h (twilight period about 2 h). The periods of 0 lx at night were from 2300 h to 0700 h on the first day and from 2300 to 0500 h on the second day. Nadir time advanced significantly under the influence of the LD-twilight condition. The amount of 6-hydroxymelatonin sulfate in urine collected at 0200 h was significantly higher under LD-twilight in comparison with LD-rectangular light. Morning drowsiness tended to be lower under LD-twilight. Our results suggest that in architectural design of indoor illumination it is important to provide LD-twilight in the evening and early morning for sleep promotion in healthy normal people and/or light treatment in elderly patients with advanced dementia