3D silicon detectors are characterized by cylindrical electrodes
perpendicular to the surface and penetrating into the bulk material in contrast
to standard Si detectors with planar electrodes on its top and bottom. This
geometry renders them particularly interesting to be used in environments where
standard silicon detectors have limitations, such as for example the radiation
environment expected in an LHC upgrade. For the first time, several 3D sensors
were assembled as hybrid pixel detectors using the ATLAS-pixel front-end chip
and readout electronics. Devices with different electrode configurations have
been characterized in a 100 GeV pion beam at the CERN SPS. Here we report
results on unirradiated devices with three 3D electrodes per 50 x 400 um2 pixel
area. Full charge collection is obtained already with comparatively low bias
voltages around 10 V. Spatial resolution with binary readout is obtained as
expected from the cell dimensions. Efficiencies of 95.9% +- 0.1 % for tracks
parallel to the electrodes and of 99.9% +- 0.1 % at 15 degrees are measured.
The homogeneity of the efficiency over the pixel area and charge sharing are
characterized.Comment: 5 pages, 7 figure