An increase in the central density of a neutron star may trigger a phase
transition from hadronic matter to deconfined quark matter in the core, causing
it to collapse to a more compact hybrid-star configuration. We present a study
of this, building on previous work by Lin et al. (2006). We follow them in
considering a supersonic phase transition and using a simplified equation of
state, but our calculations are general relativistic (using 2D simulations in
the conformally flat approximation) as compared with their 3D Newtonian
treatment. We also improved the treatment of the initial phase transformation,
avoiding the introduction of artificial convection. As before, we find that the
emitted gravitational-wave spectrum is dominated by the fundamental
quasi-radial and quadrupolar pulsation modes but the strain amplitudes are much
smaller than suggested previously, which is disappointing for the detection
prospects. However, we see significantly smaller damping and observe a
nonlinear mode resonance which substantially enhances the emission in some
cases. We explain the damping mechanisms operating, giving a different view
from the previous work. Finally, we discuss the detectability of the
gravitational waves, showing that the signal-to-noise ratio for current or
second generation interferometers could be high enough to detect such events in
our Galaxy, although third generation detectors would be needed to observe them
out to the Virgo cluster, which would be necessary for having a reasonable
event rate.Comment: 28 pages, 27 figures. Minor changes to be consistent with published
versio