research

Signatures of neutral quantum Hall modes in transport through low-density constrictions

Abstract

Constrictions in fractional quantum Hall (FQH) systems not only facilitate backscattering between counter-propagating edge modes, but also may reduce the constriction filling fraction νc\nu_c with respect to the bulk filling fraction νb\nu_b. If both νb\nu_b and νc\nu_c correspond to incompressible FQH states, at least part of the constriction region is surrounded by composite edges, whose low energy dynamics is characterized by a charge mode and one or several neutral modes. In the incoherent regime, decay of neutral modes describes the equilibration of composite FQH edges, while in the limit of coherent transport, the presence of neutral modes gives rise to universal conductance fluctuations. In addition, neutral modes renormalize the strength of scattering across the constriction, and thus can determine the relative strength of forward and backwards scattering.Comment: corrected description of the results of Ref. [10], Ref. [17] adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020