Abstract

We develop techniques to compute multi-instanton corrections to the 1/N expansion in matrix models described by orthogonal polynomials. These techniques are based on finding trans-series solutions, i.e. formal solutions with exponentially small corrections, to the recursion relations characterizing the free energy. We illustrate this method in the Hermitian, quartic matrix model, and we provide a detailed description of the instanton corrections in the Gross-Witten-Wadia (GWW) unitary matrix model. Moreover, we use Borel resummation techniques and results from the theory of resurgent functions to relate the formal multi-instanton series to the nonperturbative definition of the matrix model. We study this relation in the case of the GWW model and its double-scaling limit, providing in this way a nice illustration of various mechanisms connecting the resummation of perturbative series to nonperturbative results, like the cancellation of nonperturbative ambiguities. Finally, we argue that trans-series solutions are also relevant in the context of topological string theory. In particular, we point out that in topological string models with both a matrix model and a large N gauge theory description, the nonperturbative, holographic definition involves a sum over the multi-instanton sectors of the matrix modelComment: 50 pages, 12 figures, comments and references added, small correction

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019