Determining the timeline for the formation of massive YSOs requires the
identification and characterisation of all the phases that a massive forming
YSO undergoes. It is of particular interest to verify the observability of the
phase in which the object is rapidly accreting while not yet igniting the
fusion of hydrogen that marks the arrival on the ZAMS. One of the candidate
prototypical objects for this phase is Mol160/IRAS23385+6053, which previous
studies suggest it could be in a pre-Hot Core stage. We further investigate
this issue by means of Spitzer imaging and spectroscopy in the 5-70 micron
range. The dense core of Mol160/IRAS23385+6053, which up to now had only been
detected at submm and mm wavelenghts has been revealed for the first time at 24
and 70 micron by Spitzer. The complete 24 micron -3.4 mm continuum cannot be
fitted with a standard model of a Zero-Age Main-Sequence (ZAMS) star embedded
in an envelope. A simple greybody fit yields a mass of 220 solar masses. The
luminosity is slightly in excess of 3000 solar luminosities, which is a factor
of 5 less than previous estimates when only IRAS fluxes were available between
20 and 100 micron. The source is under-luminous by the same factor with respect
to UCHII regions or Hot-Cores of similar circumstellar mass, and simple models
show that this is compatible with an earlier evolutionary stage. Spectroscopy
between 5 and 40 microns revelas typical PDR/PIR conditions, where the required
UV illumination may be provided by other sources revealed at 24 microns in the
same region, and which can be plausibly modeled as moderately embedded
intermediate-mass ZAMS stars. Our results strengthen the suggestion that the
central core in Mol160/IRAS23385+6053 is a massive YSO actively accreting from
its circumstellar envelope and which did not yet begin hydrogen fusion.Comment: Accepted by A&