Dynamic Control Applied to a Laboratory Antilock Braking System

Abstract

The control of an antilock braking system is a difficult problem due to the existence of nonlinear dynamics and uncertainties of its characteristics. To overcome these issues, in this work, a dynamic nonlinear controller is proposed, based on a nonlinear observer. To evaluate its performance, this controller has been implemented on an ABS Laboratory setup, representing a quarter car model. The nonlinear observer reconstructs some of the state variables of the setup, assumed not measurable, to establish a fair benchmark for an ABS system of a real automobile. The dynamic controller ensures exponential convergence of the state estimation, as well as robustness with respect to parameter variations

    Similar works