Full edge-friendly index sets of complete bipartite graphs

Abstract

‎‎Let G=(V,E)G=(V,E) be a simple graph‎. ‎An edge labeling f:Eto0,1f:Eto {0,1} induces a vertex labeling f+:VtoZ2f^+:VtoZ_2 defined by f+(v)equivsumlimitsuvinEf(uv)pmod2f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2} for each vinVv in V‎, ‎where Z2=0,1Z_2={0,1} is the additive group of order 2‎. ‎For iin0,1iin{0,1}‎, ‎let‎ ‎ef(i)=f1(i)e_f(i)=|f^{-1}(i)| and vf(i)=(f+)1(i)v_f(i)=|(f^+)^{-1}(i)|‎. ‎A labeling ff is called edge-friendly if‎ ‎ef(1)ef(0)le1|e_f(1)-e_f(0)|le 1‎. ‎If(G)=vf(1)vf(0)I_f(G)=v_f(1)-v_f(0) is called the edge-friendly index of GG under an edge-friendly labeling ff‎. ‎The full edge-friendly index set of a graph GG is the set of all possible edge-friendly indices of GG‎. ‎Full edge-friendly index sets of complete bipartite graphs will be determined‎

    Similar works