research

Controlled vaporization of the superconducting condensate in cuprate superconductors sheds light on the pairing boson

Abstract

We use ultrashort intense laser pulses to study superconducting state vaporization dynamics in La(2-x)Sr(x)CuO4 (x=0.1 and 0.15) on the femtosecond timescale. We find that the energy density required to vaporize the superconducting state is 2+- 0.8 K/Cu and 2.6 +- 1 K/Cu for x=0.1 and 0.15 respectively. This is significantly greater than the condensation energy density, indicating that the quasiparticles share a large amount of energy with the boson glue bath on this timescale. Considering in detail both spin and lattice energy relaxation pathways which take place on the relevant timescale of picoseconds, we rule out purely spin-mediated pair-breaking in favor of phonon-mediated mechanisms, effectively ruling out spin-mediated pairing in cuprates as a consequence.Comment: 5 pages of article plus 4 pages of supplementary materia

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 02/01/2020