A Study of the Production and Combustion Characteristics of Pyrolytic Oil from Sewage Sludge Using the Taguchi Method

Abstract

Sewage sludge is a common form of municipal solid waste, and can be utilized as a renewable energy source. This study examines the effects of different key operational parameters on sewage sludge pyrolysis process for pyrolytic oil production using the Taguchi method. The digested sewage sludge was provided by the urban wastewater treatment plant of Tainan, Taiwan. The experimental results indicate that the maximum pyrolytic oil yield, 10.19% (18.4% on dry ash free (daf) basis) by weight achieved, is obtained under the operation conditions of 450 °C pyrolytic temperature, residence time of 60 min, 10 °C/min heating rate, and 700 mL/min nitrogen flow rate. According to the experimental results, the order of sensitivity of the parameters that affect the yield of sludge pyrolytic oil is the nitrogen flow rate, pyrolytic temperature, heating rate and residence time. The pyrolysis and oxidation reactions of sludge pyrolytic oil are also investigated using thermogravimetric analysis. The combustion performance parameters, such as the ignition temperature, burnout temperature, flammability index and combustion characteristics index are calculated and compared with those of heavy fuel oil. For the blend of sludge pyrolytic oil with heavy fuel oil, a synergistic effect occurs and the results show that sludge pyrolytic oil significantly enhances the ignition and combustion of heavy fuel oil

    Similar works