The ratio of the squares of the electric and magnetic proton form factors is
shown to be proportional to the ratio of the cross sections for the elastic
scattering of an unpolarized electron on a partially polarized proton with and
without proton spin flip. The initial proton at rest should be polarized along
the direction of the motion of the final proton. Similar results are valid for
both radiative ep scattering and the photoproduction of pairs on a proton in
the Bethe--Heitler kinematics. When the initial proton is fully polarized in
the direction of the motion of the final proton, the cross section for the ep→ep process, as well as for the ep→epγ and γp→eeˉp processes, without (with) proton spin flip is expressed only in terms of
the square of the electric (magnetic) proton form factor. Such an experiment on
the measurement of the cross sections without and with proton spin flip would
make it possible to acquire new independent data on the behavior of
GE2(Q2) and GM2(Q2), which are necessary for resolving the
contradictions appearing after the experiment of the JLab collaboration on the
measurement of the proton form factors with the method of polarization transfer
from the initial electron to the final proton.Comment: 7 pages, revtex