research

Formation control on Jordan curves based on noisy proximity measurements

Abstract

The paradigmatic formation control problem of steering a multi-agent system towards a balanced circular formation has been the subject of extensive studies in the control engineering community. Indeed, this is due to the fact that it shares several features with relevant applications such as distributed environmental monitoring or fence-patrolling. However, these applications may also present some relevant differences from the ideal setting such as the curve on which the formation must be achieved not being a circle, or the measurements being neither ideal nor as a continuous information flow. In this work, we attempt to fill this gap between theory and applications by considering the problem of steering a multi-agent system towards a balanced formation on a generic closed curve and under very restrictive assumptions on the information flow amongst the agents. We tackle this problem through an estimation and control strategy that borrows tools from interval analysis to guarantee the robustness that is required in the considered scenario

    Similar works