For a sample of an arbitrary shape, the dependence of its conductance on the
longitudinal and Hall conductivity is identical to that of a rectangle. We use
analytic results for a conducting rectangle, combined with the semicircle model
for transport coefficients, to study properties of the monolayer and bilayer
graphene. A conductance plateau centered at the neutrality point, predicted for
square geometry, is in agreement with recent experiments. For rectangular
geometry, the conductance exhibits maxima at the densities of compressible
quantum Hall states for wide samples, and minima for narrow samples. The
positions and relative sizes of these features are different in the monolayer
and bilayer cases, indicating that the conductance can be used as a tool for
sample diagnostic.Comment: 9 pages, 6 figure