Structure and Spin State of Iron(II) Assembled Complexes Using 9,10-Bis(4-pyridyl)anthracene as Bridging Ligand

Abstract

Assembled complexes, [Fe(NCX)2(bpanth)2]n (X = S, Se, BH3; bpanth = 9,10-bis(4-pyridyl)anthracene), were synthesized. The iron for the three complexes was in temperature-independent high spin state by 57Fe Mössbauer spectroscopy and magnetic susceptibility measurement. X-ray structural analysis revealed the interpenetrated structure of [Fe(NCS)2(bpanth)2]n. In the local structure around the iron atom, the coordinated pyridine planes were shown to be a parallel type, which is in accordance with the results investigated by density functional theory (DFT) calculation. This complex (X = S) has CH–π interactions between the H atom of coordinated pyridine and the neighboring anthracene of the other 2D grid. It was suggested that the interpenetrated structure was supported by the stabilization of CH–π interaction, and this intermolecular interaction forced the relatively unstable parallel structure. That is, the unstable local structure is compensated by the stabilization due to intermolecular interaction, which controlled the spin state as high spin state

    Similar works