RAB10: an Alzheimer’s disease resilience locus and potential drug target

Abstract

Justina P Tavana,1,* Matthew Rosene,2,* Nick O Jensen,2 Perry G Ridge,1 John SK Kauwe,1,3 Celeste M Karch2,4 1Department of Biology, Brigham Young University, Provo, UT 84602, USA; 2Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; 3Department of Neuroscience, Brigham Young University, Provo, UT 84602, USA; 4Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA *These authors contributed equally to this work Abstract: Alzheimer’s disease (AD) is mainly a late-onset neurodegenerative disorder. Substantial efforts have been made to solve the complex genetic architecture of AD as a means to identify therapeutic targets. Unfortunately, to date, no disease-altering therapeutics have been developed. As therapeutics are likely to be most effective in the early stages of disease (ie, before the onset of symptoms), a recent focus of AD research has been the identification of protective factors that prevent disease. One example is the discovery of a rare variant in the 3'-UTR of RAB10 that is protective for AD. Here, we review the possible genetic, molecular, and functional role of RAB10 in AD and potential therapeutic approaches to target RAB10. Keywords: Alzheimer’s disease, RAB10, retromer, APP, resilience, GTPas

    Similar works

    Full text

    thumbnail-image