research

The allelic partition for coalescent point processes

Abstract

Assume that individuals alive at time tt in some population can be ranked in such a way that the coalescence times between consecutive individuals are i.i.d. The ranked sequence of these branches is called a coalescent point process. We have shown in a previous work that splitting trees are important instances of such populations. Here, individuals are given DNA sequences, and for a sample of nn DNA sequences belonging to distinct individuals, we consider the number SnS_n of polymorphic sites (sites at which at least two sequences differ), and the number AnA_n of distinct haplotypes (sequences differing at one site at least). It is standard to assume that mutations arrive at constant rate (on germ lines), and never hit the same site on the DNA sequence. We study the mutation pattern associated to coalescent point processes under this assumption. Here, SnS_n and AnA_n grow linearly as nn grows, with explicit rate. However, when the branch lengths have infinite expectation, SnS_n grows more rapidly, e.g. as nln(n)n \ln(n) for critical birth--death processes. Then, we study the frequency spectrum of the sample, that is, the numbers of polymorphic sites/haplotypes carried by kk individuals in the sample. These numbers are shown to grow also linearly with sample size, and we provide simple explicit formulae for mutation frequencies and haplotype frequencies. For critical birth--death processes, mutation frequencies are given by the harmonic series and haplotype frequencies by Fisher logarithmic series

    Similar works