The Optimal Number of Hospital Beds Under Uncertainty: A Costs Management Approach

Abstract

Equipping hospital beds uses a great deal of a hospital''''s resources. Therefore, it is essential to consider the hospital beds'''' efficiency. To increase its efficiency, a fuzzy unrestricted model for managing hospital expenses is presented in this paper. The lack of beds in hospitals leads to patients’ admission loss and consecutively profit loss. On the other hand, increasing the bed count leads to an increase in equipment expenses. Therefore, in order to determine optimal bed capacity, it is of utmost importance to consider these two costs simultaneously. In our paper, hospital admission system is modeled with a multi-server queuing system (M/M/K). Therefore, to calculate the total cost function, limiting probabilities of multi-server queueing model is used. Furthermore, due to uncertain nature of parameters, such as interest rate and hospitalization profit in various future time periods, these uncertainties are covered by fuzzy logic. Finally, to determine the optimal bed count, Lee and Li''''s fuzzy ranking method is used. This model is implemented ona case study. Its goal is to determine the optimal bed count for emergency unit of Razi hospital in Torbat Heydarieh. Considering the high capability of Markovian chains in modeling different circumstances and the various queueing models, the proposed model can be extended for various hospital units

    Similar works