A Current Reconstruction at Parallel Three Phase Inverters Using Two Current Sensors

Abstract

In this paper, a current restoration method which can be applied to three phase parallel interleaved inverters (TPPII) using two current sensors has been proposed. In the proposed current reconstruction method, the branch current and the phase current of the two phases of the TPPII are sampled concurrently at the peak and valley of the pulse width modulation (PWM) carrier using two hall-effect sensors. Then, the phase current of each inverter is reconstructed by analyzing the sensed current with the current conduction path information according to the switch state in the peak and valley of the PWM carrier. This paper additionally analyzes the characteristics of the offset occurring in the detection process of two current sensors and it proposes a compensation method to reduce the offset on-line. In order to at once reduce the offset of the three-phase recovery current caused by the DC offset of the sensor, a coordinate conversion method and a low pass are used. To verify the performance of the proposed current recovery method and real-time offset compensation method, a simulation using PSIM software was performed, and experiments were conducted using a three phase parallel inverter composed of insulated gate bipolar transistor (IGBT) modules. In particular, the AC offset that occurred in the sampling process during the experiment was analyzed and modeled, and it was reduced by simple calculation

    Similar works