Enhanced Wear Resistance of 316 L Stainless Steel with a Nanostructured Surface Layer Prepared by Ultrasonic Surface Rolling

Abstract

The low hardness and poor wear resistance of AISI 316 L austenitic stainless-steel sabotage its outer appearance and shorten its service life when it is subjected to sliding. In this paper, the single-pass ultrasonic surface rolling (USR) process was used to modify the surface of 316 L austenitic stainless steel. A nanostructured surface layer with a depth span of 15 μm was fabricated. Dry wear tests of USR samples were performed on a ring-on-block tester at room temperature, and the results were compared with those for the as-received sample. The USR sample showed a significant reduction in wear mass loss and an improved hardness, as well as a decreased surface roughness. The detailed wear mechanism was also investigated by SEM observations of the worn surfaces. It was indicated that oxidation and abrasive wear, accompanied by mild adhesion, dominated the wear of USR 316 L stainless steel at both low and high speeds. The superior wear performance of USR 316 L was attributed to its nanostructured surface layer, which was characterized by a high hardness and thereby suppressed the severe abrasive wear. The results provided an alternative approach to modifying the surface of 316 L stainless steel, without changing its surface chemical components

    Similar works

    Full text

    thumbnail-image