Objective: Micro-RNAs (miRNAs) are a class of posttranscriptional regulators that play
crucial roles in various biological processes. Emerging evidence suggests a direct link
between miRNAs and development of several diseases including type 2 diabetes (T2D).
In this study, we aimed to investigate the effect of predicted miRNA and target genes on
insulin resistance.
Materials and Methods: This experimental study was conducted on the C2C12 cell line.
Using bioinformatics tools miRNA-135 and two respective target genes-insulin receptor
(Insr) and vesicle associated membrane protein 2 (Vamp2)- were selected as potential
factors involved in insulin resistance process. Levels of glucose uptake miRNA expression
and respective gene targets were determined after cell transfaction by miR-135.
Results: It was determined that Insr gene expression was significantly down-regulated
in miR-135 transfected C2C12 cell line (P≤0.05). Interestingly; these transfected cells
have shown a significant difference in glucose uptake incomparision the positive control
cells, while it was similar to the insulin resistant cell line (P≤0.05). In contrast, no significant
alteration of Vamp2 gene expression was observed.
Conclusion: Our data indicated no change on the Vamp2 expression level after miRNA
transfection, while expression level of Insr was reduced and miR-135 expression
was contrarily increased leading to poor stimulation of glucose uptake through insulin,
and development of insulin resistance phenotype in C2C12 cell line