We address the problem of state estimation, attack isolation, and control of
discrete-time linear time-invariant systems under (potentially unbounded)
actuator and sensor false data injection attacks. Using a bank of unknown input
observers, each observer leading to an exponentially stable estimation error
(in the attack-free case), we propose an observer-based estimator that provides
exponential estimates of the system state in spite of actuator and sensor
attacks. Exploiting sensor and actuator redundancy, the estimation scheme is
guaranteed to work if a sufficiently small subset of sensors and actuators are
under attack. Using the proposed estimator, we provide tools for reconstructing
and isolating actuator and sensor attacks; and a control scheme capable of
stabilizing the closed-loop dynamics by switching off isolated actuators.
Simulation results are presented to illustrate the performance of our tools.Comment: arXiv admin note: substantial text overlap with arXiv:1811.1015