research

Dynamical Bonding Driving Mixed Valency in a Metal Boride

Abstract

Samarium hexaboride is an anomaly, having many exotic and seemingly mutually incompatible properties. It was proposed to be a mixed-valent semiconductor, and later - a topological Kondo insulator, and yet has a Fermi surface despite being an insulator. We propose a new and unified understanding of SmB6_6 centered on the hitherto unrecognized dynamical bonding effect: the coexistence of two Sm-B bonding modes within SmB6_6, corresponding to different oxidation states of the Sm. The mixed valency arises in SmB6_6 from thermal population of these distinct minima enabled by motion of B. Our model simultaneously explains the thermal valence fluctuations, appearance of magnetic Fermi surface, excess entropy at low temperatures, pressure-induced phase transitions, and related features in Raman spectra and their unexpected dependence on temperature and boron isotope

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2021
    Last time updated on 25/03/2021