Regulating cost for renewable energy integration in power grids

Abstract

To address the issue of climate change caused by the use of polluting, non-renewable energy sources, the use of renewable energy has gained momentum worldwide. Consequently, the increased integration of renewable energy sources into power grids has necessitated the inclusion of flexible capacities in the power systems to solve problems of intermittent and fluctuating characteristics associated with renewable generation outputs. In this work, we study the regulating cost of a power system with high renewable penetration using an improved time-series system production simulation analysis method. The operational cost of the system is considered as the objective function. Three different methods to increase regulating capacities, including using interconnection lines, building additional flexible power capacities, and retrofitting existing thermal power plants, are adopted and simulated to compare the costs of accommodating renewable energy in the system in these cases. Our results indicate that increasing the flexibility of thermal power plants and developing cross-regional connection lines are cost-effective methods of increasing renewable energy consumption. Keywords: Renewable energy, Power grid, Regulating ability, Cross-regional connecting line

    Similar works

    Full text

    thumbnail-image