Targeted sentiment classification aims at determining the sentimental
tendency towards specific targets. Most of the previous approaches model
context and target words with RNN and attention. However, RNNs are difficult to
parallelize and truncated backpropagation through time brings difficulty in
remembering long-term patterns. To address this issue, this paper proposes an
Attentional Encoder Network (AEN) which eschews recurrence and employs
attention based encoders for the modeling between context and target. We raise
the label unreliability issue and introduce label smoothing regularization. We
also apply pre-trained BERT to this task and obtain new state-of-the-art
results. Experiments and analysis demonstrate the effectiveness and lightweight
of our model.Comment: 7 page