Semantic networks qualify the meaning of an edge relating any two vertices.
Determining which vertices are most "central" in a semantic network is
difficult because one relationship type may be deemed subjectively more
important than another. For this reason, research into semantic network metrics
has focused primarily on context-based rankings (i.e. user prescribed
contexts). Moreover, many of the current semantic network metrics rank semantic
associations (i.e. directed paths between two vertices) and not the vertices
themselves. This article presents a framework for calculating semantically
meaningful primary eigenvector-based metrics such as eigenvector centrality and
PageRank in semantic networks using a modified version of the random walker
model of Markov chain analysis. Random walkers, in the context of this article,
are constrained by a grammar, where the grammar is a user defined data
structure that determines the meaning of the final vertex ranking. The ideas in
this article are presented within the context of the Resource Description
Framework (RDF) of the Semantic Web initiative.Comment: First draft of manuscript originally written in November 200