The behavior of O atoms in Ti film is investigated under high-flux, low-energy molecular water ion implantation. After 10 min of irradiation at room temperature, the anomalously deep penetration of oxygen without formation of new chemical compounds
observable by XRD has been registered in Ti films using Auger spectroscopy analysis. It is shown that the surface energy increases under ion irradiation, and the relaxation processes minimizing the surface energy initiate the redistribution of atoms. Two surface energy relaxation processes are considered: (i) the mixing of atoms on the surface resulting in annihilation of surface vacancies; and (ii) the annihilation of surface
vacancies by atoms transported from the bulk. The theoretical considerations are in agreement with the experimental results if to assume that the mass-transport in the bulk is controlled by the processes on the surface and the adsorption of reactive atoms or molecules leads to local and long-range restructuring and adatom relocation at the surface.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2081