In spite of its importance, passenger demand prediction is a highly
challenging problem, because the demand is simultaneously influenced by the
complex interactions among many spatial and temporal factors and other external
factors such as weather. To address this problem, we propose a Spatio-TEmporal
Fuzzy neural Network (STEF-Net) to accurately predict passenger demands
incorporating the complex interactions of all known important factors. We
design an end-to-end learning framework with different neural networks modeling
different factors. Specifically, we propose to capture spatio-temporal feature
interactions via a convolutional long short-term memory network and model
external factors via a fuzzy neural network that handles data uncertainty
significantly better than deterministic methods. To keep the temporal relations
when fusing two networks and emphasize discriminative spatio-temporal feature
interactions, we employ a novel feature fusion method with a convolution
operation and an attention layer. As far as we know, our work is the first to
fuse a deep recurrent neural network and a fuzzy neural network to model
complex spatial-temporal feature interactions with additional uncertain input
features for predictive learning. Experiments on a large-scale real-world
dataset show that our model achieves more than 10% improvement over the
state-of-the-art approaches.Comment: https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.1