research

Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme

Abstract

Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high-dimensional probability distributions. They rely on a collection of NN interacting auxiliary chains targeting tempered versions of the target distribution to improve the exploration of the state-space. We provide here a new perspective on these highly parallel algorithms and their tuning by identifying and formalizing a sharp divide in the behaviour and performance of reversible versus non-reversible PT schemes. We show theoretically and empirically that a class of non-reversible PT methods dominates its reversible counterparts and identify distinct scaling limits for the non-reversible and reversible schemes, the former being a piecewise-deterministic Markov process and the latter a diffusion. These results are exploited to identify the optimal annealing schedule for non-reversible PT and to develop an iterative scheme approximating this schedule. We provide a wide range of numerical examples supporting our theoretical and methodological contributions. The proposed methodology is applicable to sample from a distribution π\pi with a density LL with respect to a reference distribution π0\pi_0 and compute the normalizing constant. A typical use case is when π0\pi_0 is a prior distribution, LL a likelihood function and π\pi the corresponding posterior.Comment: 74 pages, 30 figures. The method is implemented in an open source probabilistic programming available at https://github.com/UBC-Stat-ML/blangSD

    Similar works