research

Convexity properties of gradient maps associated to real reductive representations

Abstract

Let G be a connected real reductive Lie group acting linearly on a finite dimensional vector space V over R. This action admits a Kempf-Ness function and so we have an associated gradient map. If G is Abelian we explicitly compute the image of G orbits under the gradient map, generalizing a result proved by Kac and Peterson. A similar result is proved for the gradient map associated to the natural GG action on P(V). We also investigate the convex hull of the image of the gradient map restricted on the closure of G orbits. Finally, we give a new proof of the Hilbert-Mumford criterion for real reductive Lie groups avoiding any algebraic resul

    Similar works