research

Fast Mesh Refinement in Pseudospectral Optimal Control

Abstract

Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy --- simply increase the order NN of the Lagrange interpolating polynomial and the mathematics of convergence automates the distribution of the grid points. Unfortunately, as NN increases, the condition number of the resulting linear algebra increases as N2N^2; hence, spectral efficiency and accuracy are lost in practice. In this paper, we advance Birkhoff interpolation concepts over an arbitrary grid to generate well-conditioned PS optimal control discretizations. We show that the condition number increases only as N\sqrt{N} in general, but is independent of NN for the special case of one of the boundary points being fixed. Hence, spectral accuracy and efficiency are maintained as NN increases. The effectiveness of the resulting fast mesh refinement strategy is demonstrated by using \underline{polynomials of over a thousandth order} to solve a low-thrust, long-duration orbit transfer problem.Comment: 27 pages, 12 figures, JGCD April 201

    Similar works