research

Cosmological constraints on neutrino self-interactions with a light mediator

Abstract

If active neutrinos undergo non-standard (`secret') interactions (NSν\nuI) the cosmological evolution of the neutrino fluid might be altered, leaving an imprint in cosmological observables. We use the latest publicly available CMB data from Planck to constrain NSν\nuI inducing νν\nu-\nu scattering, under the assumption that the mediator ϕ\phi of the secret interaction is very light. We find that the effective coupling constant of the interaction, geff4σvTν2g_\mathrm{eff}^4 \equiv \langle \sigma v\rangle T_\nu^2, is constrained at <2.35×1027< 2.35\times10^{-27} (95\% credible interval), which stregthens to geff4<1.64×1027g_\mathrm{eff}^4 < 1.64\times10^{-27} when Planck non-baseline small-scale polarization is considered. Our findings imply that after decoupling at T1T\simeq 1 MeV, cosmic neutrinos are free streaming at redshifts z>3800z>3800, or z>2300z>2300 if small-scale polarization is included. These bounds are only marginally improved when data from geometrical expansion probes are included in the analysis to complement Planck. We also find that the tensions between CMB and low-redshift measurements of the expansion rate H0H_0 and the amplitude of matter fluctuations σ8\sigma_8 are not significantly reduced. Our results are independent on the underlying particle physics model as long as ϕ\phi is very light. Considering a model with Majorana neutrinos and a pseudoscalar mediator we find that the coupling constant gg of the secret interaction is constrained at 7×107\lesssim 7\times 10^{-7}. By further assuming that the pseudoscalar interaction comes from a dynamical realization of the see-saw mechanism, as in Majoron models, we can bound the scale of lepton number breaking vσv_\sigma as (1.4×106)mν\gtrsim (1.4\times 10^{6})m_\nu.Comment: V2. Replaced to match version accepted for publication in PRD. Added more detailed discussion about parameter degeneracies. 14 pages, 6 figures, 3 table

    Similar works