research

Causation of Late Quaternary Rapid-increase Radiocarbon Anomalies

Abstract

Brief (less than 100 years) rapid-increase anomalies in the Earth's atmospheric radiocarbon production have previously been attributed to either gamma photon radiation from supernovae or to cosmic ray particle radiation from exceptionally large solar flares. Analysis of distances and ages of nearby supernovae remnants, the probable gamma emissions, the predicted Earth incident radiation, and the terrestrial radiocarbon record indicates that supernova causation may be the case. Supernovae include Type Ia white dwarf explosions, Type Ib, c, and II core collapse events, and some types of gamma burst objects. All generate significant pulses of atmospheric radiocarbon depending on distances. Surveys of supernova remnants offer a nearly complete accounting for the past 50,000 years. There are 18 events less than or at 1.4 kilo-parsec distance, and brief radiocarbon anomalies with appropriate sizes occurred for each of the closest events. In calendar years before 1950, these are: Vela, 22 per mil del 14C at 12,760; S165, 20 per mil at 7431; Vela Junior, 13 per mil at 2765; HB9, 9 per mil at 5372; Boomerang, 11 per mil at 10,255; and Cygnus Loop (per mil change not calculated) at 14,722. Although uncertainties remain large, the agreements of prediction to observation support a possible causal connection

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/01/2024