Temporally and spectrally resolved dynamics of optically excited carriers in
graphene has been intensively studied theoretically and experimentally, whereas
carrier diffusion in space has attracted much less attention. Understanding the
spatio-temporal carrier dynamics is of key importance for optoelectronic
applications, where carrier transport phenomena play an important role. In this
work, we provide a microscopic access to the time-, momentum-, and
space-resolved dynamics of carriers in graphene. We determine the diffusion
coefficient to be D≈360cm2/s and reveal the impact of
carrier-phonon and carrier-carrier scattering on the diffusion process. In
particular, we show that phonon-induced scattering across the Dirac cone gives
rise to back-diffusion counteracting the spatial broadening of the carrier
distribution