slides

The hydrogen molecule H2\rm{H}_{2} in inclined configuration in a weak magnetic field

Abstract

Highly accurate variational calculations, based on a few-parameter, physically adequate trial function, are carried out for the hydrogen molecule \hh in inclined configuration, where the molecular axis forms an angle θ\theta with respect to the direction of a uniform constant magnetic field B{\bf B}, for B=0,0.1,0.175B=0,\, 0.1,\, 0.175 and 0.20.2\,a.u. Three inclinations θ=0,45,90\theta=0^\circ,\,45^\circ,\,90^\circ are studied in detail with emphasis to the ground state 1g1_g. Diamagnetic and paramagnetic susceptibilities are calculated (for θ=45\theta=45^\circ for the first time), they are in agreement with the experimental data and with other calculations. For B=0,0.1B=0,\, 0.1 and 0.20.2\,a.u. potential energy curves EE vs RR are built for each inclination, they are interpolated by simple, two-point Pad\'e approximant Pade[2/6](R)Pade[2/6](R) with accuracy of not less than 4 significant digits. Spectra of rovibrational states are calculated for the first time. It was found that the optimal configuration of the ground state for BBcr=0.178B \leq B_{cr}=0.178\,a.u. corresponds always to the parallel configuration, θ=0\theta=0, thus, it is a 1Σg^1\Sigma_g state. The state 1g1_g remains bound for any magnetic field, becoming metastable for B>BcrB > B_{cr}, while for Bcr<B<12B_{cr} < B < 12\,a.u. the ground state corresponds to two isolated hydrogen atoms with parallel spins.Comment: 31 pages, 11 Tables, 7 Figures (2 new), following referee's suggestions parts 4,5,6 essentially rewritten, to be published at Journal of Quantitative Spectroscopy and Radiative Transfe

    Similar works