We present a computational framework for the simulation of blood flow with
fully resolved red blood cells (RBCs) using a modular approach that consists of
a lattice Boltzmann solver for the blood plasma, a novel finite element based
solver for the deformable bodies and an immersed boundary method for the
fluid-solid interaction. For the RBCs, we propose a nodal projective FEM
(npFEM) solver which has theoretical advantages over the more commonly used
mass-spring systems (mesoscopic modeling), such as an unconditional stability,
versatile material expressivity, and one set of parameters to fully describe
the behavior of the body at any mesh resolution. At the same time, the method
is substantially faster than other FEM solvers proposed in this field, and has
an efficiency that is comparable to the one of mesoscopic models. At its core,
the solver uses specially defined potential energies, and builds upon them a
fast iterative procedure based on quasi-Newton techniques. For a known
material, our solver has only one free parameter that demands tuning, related
to the body viscoelasticity. In contrast, state-of-the-art solvers for
deformable bodies have more free parameters, and the calibration of the models
demands special assumptions regarding the mesh topology, which restrict their
generality and mesh independence. We propose as well a modification to the
potential energy proposed by Skalak et al. 1973 for the red blood cell
membrane, which enhances the strain hardening behavior at higher deformations.
Our viscoelastic model for the red blood cell, while simple enough and
applicable to any kind of solver as a post-convergence step, can capture
accurately the characteristic recovery time and tank-treading frequencies. The
framework is validated using experimental data, and it proves to be scalable
for multiple deformable bodies