Distance correlation is a new measure of dependence between random vectors.
Distance covariance and distance correlation are analogous to product-moment
covariance and correlation, but unlike the classical definition of correlation,
distance correlation is zero only if the random vectors are independent. The
empirical distance dependence measures are based on certain Euclidean distances
between sample elements rather than sample moments, yet have a compact
representation analogous to the classical covariance and correlation.
Asymptotic properties and applications in testing independence are discussed.
Implementation of the test and Monte Carlo results are also presented.Comment: Published in at http://dx.doi.org/10.1214/009053607000000505 the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org